Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.07.15.500120

ABSTRACT

Numerous host factors of SARS-CoV-2 have been identified by screening approaches, but delineating their molecular roles during infection and whether they can be targeted for antiviral intervention remains a challenge. Here we use Perturb-seq, a single-cell CRISPR screening approach, to investigate how CRISPR interference of host factors changes the course of SARS-CoV-2 infection and the host response in human lung epithelial cells. Our data reveal two classes of host factors with pronounced phenotypes: factors required for the response to interferon and factors required for entry or early infection. Among the latter, we have characterized the NF-{kappa}B inhibitor I{kappa}B (NFKBIA), as well as the translation factors EIF4E2 and EIF4H as strong host dependency factors acting early in infection. Overall, our study provides high-throughput functional validation of host factors of SARS-CoV-2 and describes their roles during viral infection in both infected and bystander cells.


Subject(s)
Virus Diseases , COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.08.21263095

ABSTRACT

The wide spectrum of SARS-CoV-2 variants with phenotypes impacting transmission and antibody sensitivity necessitates investigation of the immune response to different spike protein versions. Here, we compare the neutralization of variants of concern, including B.1.617.2 (Delta) in sera from individuals exposed to variant infection, vaccination, or both. We demonstrate that neutralizing antibody responses are strongest against variants sharing one or more spike mutations with the immunizing exposure. We also observe that exposure to multiple spike variants increases the breadth of variant cross-neutralization. These findings contribute to understanding the relationship between exposures and antibody responses and may inform booster vaccination strategies.

3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.01.21252705

ABSTRACT

BackgroundSequencing of the SARS-CoV-2 viral genome from patient samples is an important epidemiological tool for monitoring and responding to the pandemic, including the emergence of new mutations in specific communities. MethodsSARS-CoV-2 genomic sequences were generated from positive samples collected, along with epidemiological metadata, at a walk-up, rapid testing site in the Mission District of San Francisco, California during November 22-December 2, 2020 and January 10-29, 2021. Secondary household attack rates and mean sample viral load were estimated and compared across observed variants. ResultsA total of 12,124 tests were performed yielding 1,099 positives. From these, 811 high quality genomes were generated. Certain viral lineages bearing spike mutations, defined in part by L452R, S13I, and W152C, comprised 54.9% of the total sequences from January, compared to 15.7% in November. Household contacts exposed to "West Coast" variants were at higher risk of infection compared to household contacts exposed to lineages lacking these variants (0.357 vs 0.294, RR=1.29; 95% CI:1.01-1.64). The reproductive number was estimated to be modestly higher than other lineages spreading in California during the second half of 2020. Viral loads were similar among persons infected with West Coast versus non-West Coast strains, as was the proportion of individuals with symptoms (60.9% vs 64.1%). ConclusionsThe increase in prevalence, relative household attack rates, and reproductive number are consistent with a modest transmissibility increase of the West Coast variants; however, additional laboratory and epidemiological studies are required to better understand differences between these variants. SummaryWe observed a growing prevalence and elevated attack rate for "West Coast" SARS-CoV-2 variants in a community testing setting in San Francisco during January 2021, suggesting its modestly higher transmissibility.

4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.02.20223891

ABSTRACT

We evaluated the performance of the Abbott BinaxNOWTM Covid-19 rapid antigen test to detect virus among persons, regardless of symptoms, at a public plaza site of ongoing community transmission. Titration with cultured clinical SARS-CoV-2 yielded a human observable threshold between 1.6x104-4.3x104 viral RNA copies (cycle threshold (Ct) of 30.3-28.8 in this assay). Among 878 subjects tested, 3% (26/878) were positive by RT-PCR, of which 15/26 had a Ct<30, indicating high viral load. 40% (6/15) of Ct<30 were asymptomatic. Using this Ct<30 threshold for Binax-CoV2 evaluation, the sensitivity of the Binax-CoV2 was 93.3% (14/15), 95% CI: 68.1-99.8%, and the specificity was 99.9% (862/863), 95% CI: 99.4-99.9%.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL